sighet Documentation
Release 0.0.1

Peter Davies and Aldo Glielmo

Feb 19, 2021

Table of Contents

1 Installation 3
1.1 Installing the reqUIr€mMents v v v v it e e e e e e e e e e e e e e 3
1.2 Installing the package e 3
2 Implemented Algorithms 5
2.1 Spectral ClUSIETING o e e e e e e e e e e e e e e e e e 5
2.2 Semidefinite clustering L Lo e e 5
2.3 Generalised eigenproblem clustering oL Lo L 5
3 Typical usage of the package 7
4 Modules (API reference) 9
4.1 Theclustermodule e e 9
42 Theblock_modelsmodule e e e 14
43 Theutilsmodule L e e e e e e e e 15
5 Indices and tables 17
Python Module Index 19
Index 21

sighet Documentation, Release 0.0.1

SigNet is a Python package for clustering of Signed Networks.

The code can be found on GitHub at https://github.com/alan-turing-institute/SigNet .

Table of Contents 1

https://github.com/alan-turing-institute/SigNet

signet Documentation, Release 0.0.1

2 Table of Contents

CHAPTER 1

Installation

1.1 Installing the requirements

This package is based on numpy, scipy, networkx, sklearn and cvxpy. These can be easily installed using anaconda or
pip. Alternatively, they will be automatically installed with the package.

1.2 Installing the package

Install the latest version from the Github repository via

’ pip install git+https://github.com/alan-turing-institute/SigNet.git

signet Documentation, Release 0.0.1

4 Chapter 1. Installation

CHAPTER 2

Implemented Algorithms

The algorithms currently implemented in the package can be clustered in three broad groups

2.1 Spectral clustering

These algorithms involve finding the top (lowest or highest) eigenvectors of a specific matrix. Depending on the matrix
used, one can distinguish several algorithms. Some well known matrices which can be used for signed networks are:

* Adjacency

 Signed Laplacian matrix

2.2 Semidefinite clustering

These algorithms involve the solution of a semidefinite programming optimisation problem.

2.3 Generalised eigenproblem clustering

These algorithms involve the finding the top (lowest or highest) eigenvectors of a pair of matrices.

signet Documentation, Release 0.0.1

6 Chapter 2. Implemented Algorithms

CHAPTER 3

Typical usage of the package

A typical usage of SigNet involves the initialisation of the Cluster class with a given pair of adjacency matrices and a
subsequent application of a specific method.

from signet.cluster import Cluster
from signet.block models import SSMB
from sklearn.metrics import adjusted_rand_score

simple test on the signed stochastic block model

n = 50000 # number of nodes

k =2 # number of clusters

eta = 0.1 # sign flipping probability

p = 0.0002 # edge probability

(Ap, An), true_assignment = SSBM(n = n, k = k, pin = p, etain = eta) # construct a_
—graph

c = Cluster((Ap, An))

predictions = c.spectral_cluster_laplacian(k = k, normalisation='sym') # cluster with_
—the signed laplacian
score = adjusted_rand_score (predictions, true_assignment)

print (score)

signet Documentation, Release 0.0.1

8 Chapter 3. Typical usage of the package

CHAPTER 4

Modules (API reference)

The package contains three modules: cluster, block_models and utils.

4.1 The cluster module

Inside the cluster module one can find the Cluster class, which is the main class of the package. It is inisialised with
a pair of adjacency matrices (one for the positive and one for the negative graph) and it contain all the implemented
algorithms as class methods.

class cluster.Cluster (data)
Class containing all clustering algorithms for signed networks.

This should be initialised with a tuple of two csc matrices, representing positive and negative adjacency matrix
respectively (A" and A”-). It contains clustering algorithms as methods and graph specifications as attributes.

Parameters data (tuple)— Tuple containing positive and negative adjacency matrix (A", AN-).

F positive adjacency matrix.
Type csc matrix
n
negative adjacency matrix.
Type csc matrix
A
total adjacency matrix.
Type csc matrix
D_p

diagonal degree matrix of positive adjacency.

Type csc matrix

signet Documentation, Release 0.0.1

D_n
diagonal degree matrix of negative adjacency.

Type csc matrix

Dbar
diagonal signed degree matrix.

Type csc matrix

normA
symmetrically normalised adjacency matrix.

Type csc matrix

size
number of nodes in network

Type int

SDP_cluster (k, solver="BM_proj_grad’, normalisation="sym_sep’)
Clustering based on a SDP relaxation of the clustering problem.

A low dimensional embedding is obtained via the lowest eigenvectors of positive-semidefinite matrix Z
which maximises its Frobenious product with the adjacency matrix and k-means is performed in this space.

Parameters

e k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* solver (str) — Type of solver for the SDP formulation. ‘interior_point_method’ - In-
terior point method. ‘BM_proj_grad’ - Burer Monteiro method using projected gradient
updates. ‘BM_aug_lag’ - Burer Monteiro method using augmented Lagrangian updates.

Returns Label assignments.
Return type array of int, or list of array of int

SPONGE (k=4, tau_p=1, tau_n=1, eigens=None, mi=None)
Clusters the graph using the Signed Positive Over Negative Generalised Eigenproblem (SPONGE) clus-
tering.

The algorithm tries to minimises the following ratio (Lbar"+ + tau_n D”-)/(Lbar"- + tau_p D”+). The
parameters tau_p and tau_n can be typically set to one.

Parameters

* k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* tau_n (float) - regularisation of the numerator
* tau_p (float) - regularisation of the denominator
Returns Output assignment to clusters.
Return type array of int, or list of array of int
Other Parameters
* eigens (int) — The number of eigenvectors to take. Defaults to k.

e mi (inf) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

* nudge (int) — Amount added to diagonal to bound eigenvalues away from 0.

10 Chapter 4. Modules (API reference)

sighet Documentation, Release 0.0.1

SPONGE_sym (k=4, tau_p=1, tau_n=1, eigens=None, mi=None)
Clusters the graph using the symmetric normalised version of the SPONGE clustering algorithm.

The algorithm tries to minimises the following ratio (Lbar_sym”+ + tau_n Id)/(Lbar_sym”- + tau_p Id).
The parameters tau_p and tau_n can be typically set to one.

Parameters

e k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* tau_n (float) - regularisation of the numerator
* tau_p (float) - regularisation of the denominator
Returns Output assignment to clusters.
Return type array of int, or list of array of int
Other Parameters
* eigens (int) — The number of eigenvectors to take. Defaults to k.

e mi (int) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

* nudge (int) — Amount added to diagonal to bound eigenvalues away from 0.

find_eigenvalues (k=100, matrix="laplacian’)
Find top or bottom k eigenvalues of adjacency or laplacian matrix.

The list of the top (bottom) k eigenvalues of the adjacency (laplacian) matrix is returned. This can be
useful in identifying the number of clusters.

Note: The Laplacian matrix used is the signed symmetric Laplacian.

Parameters

* k (int) — Number of eigenvalues to return

* matrix (str) - Type of matrix to diagonalise (either ‘adjacency’ or ‘laplacian’)
Returns

An array of the first k eigenvalues, ordered in ascending or descending order
(depending on the matrix type)

Return type array of float
geproblem_adjacency (k=4, normalisation="multiplicative’, eigens=None, mi=None, nudge=0.5)
Clusters the graph by solving a adjacency-matrix-based generalised eigenvalue problem.
Parameters

* k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* normalisation (string) - How to normalise for cluster size: ‘none’ - do not nor-
malise. ‘additive’ - add degree matrices appropriately. ‘multiplicative’ - multiply by de-
gree matrices appropriately.

Returns Output assignment to clusters.

Return type array of int, or list of array of int

4.1.

The cluster module 11

signet Documentation, Release 0.0.1

Other Parameters
* eigens (int) — The number of eigenvectors to take. Defaults to k.

e mi (inf) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

* nudge (int) — Amount added to diagonal to bound eigenvalues away from 0.

geproblem_laplacian (k=4, normalisation="multiplicative’, eigens=None, mi=None, tau=1.0)
Clusters the graph by solving a Laplacian-based generalised eigenvalue problem.

Parameters

* k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* normalisation (string) - How to normalise for cluster size: ‘none’ - do not nor-
malise. ‘additive’ - add degree matrices appropriately. ‘multiplicative’ - multiply by de-
gree matrices appropriately.

Returns Output assignment to clusters.
Return type array of int, or list of array of int
Other Parameters
* eigens (inf) — The number of eigenvectors to take. Defaults to k.

* mi (inf) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

* nudge (int) — Amount added to diagonal to bound eigenvalues away from 0.

spectral_cluster_adjacency (k=2, normalisation="sym_sep’, eigens=None, mi=None)
Clusters the graph using eigenvectors of the adjacency matrix.

Parameters

* k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* normalisation (string) - How to normalise for cluster size: ‘none’ - do not nor-
malise. ‘sym’ - symmetric normalisation. ‘rw’ - random walk normalisation. ‘sym_sep’
- separate symmetric normalisation of positive and negative parts. ‘rw_sep’ - separate
random walk normalisation of positive and negative parts.

Returns Output assignment to clusters.
Return type array of int, or list of array of int
Other Parameters
* eigens (int) — The number of eigenvectors to take. Defaults to k.

* mi (inf) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

spectral_cluster_adjacency_reg (k=2, normalisation="sym_sep’, tau_p=None, tau_n=None,

eigens=None, mi=None)
Clusters the graph using eigenvectors of the regularised adjacency matrix.

Parameters

* k (int) — The number of clusters to identify.

12 Chapter 4. Modules (API reference)

sighet Documentation, Release 0.0.1

* normalisation (string) - How to normalise for cluster size: ‘none’ - do not nor-
malise. ‘sym’ - symmetric normalisation. ‘rw’ - random walk normalisation. ‘sym_sep’
- separate symmetric normalisation of positive and negative parts. ‘rw_sep’ - separate
random walk normalisation of positive and negative parts.

* tau_p (int)— Regularisation coefficient for positive adjacency matrix.
* tau_n (int)— Regularisation coefficient for negative adjacency matrix.
Returns Output assignment to clusters.
Return type array of int
Other Parameters
* eigens (int) — The number of eigenvectors to take. Defaults to k.

e mi (inf) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

spectral_cluster_bethe_hessian (k, mi=1000, r=None, justpos=True)
Clustering based on signed Bethe Hessian.

A low dimensional embedding is obtained via the lowest eigenvectors of the signed Bethe Hessian matrix

Hbar and k-means is performed in this space.
Parameters

e k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* mi (int) - Maximum number of iterations of the eigensolver.

* type (str) - Types of normalisation of the Laplacian matrix. ‘unnormalised’, ‘symmet-
ric’, ‘random_walk’.

Returns Label assignments. int: Suggested number of clusters for network.
Return type array of int, or list of array of int

spectral_cluster_bnc (k=2, normalisation="sym’, eigens=None, mi=None)
Clusters the graph by using the Balance Normalised Cut or Balance Ratio Cut objective matrix.

Parameters

* k(int, or 1list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* normalisation (string)— How to normalise for cluster size: ‘none’ - do not nor-
malise. ‘sym’ - symmetric normalisation. ‘rw’ - random walk normalisation.

Returns Output assignment to clusters.
Return type array of int, or list of array of int
Other Parameters
* eigens (int) — The number of eigenvectors to take. Defaults to k.

e mi (inf) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

spectral_cluster_ laplacian (k=2, normalisation="sym_sep’, eigens=None, mi=None)
Clusters the graph using the eigenvectors of the graph signed Laplacian.

Parameters

4.1.

The cluster module

13

signet Documentation, Release 0.0.1

* k(int, or list of int)-The number of clusters to identify. If a list is given, the
output is a corresponding list.

* normalisation (string) - How to normalise for cluster size: ‘none’ - do not nor-
malise. ‘sym’ - symmetric normalisation. ‘rw’ - random walk normalisation. ‘sym_sep’
- separate symmetric normalisation of positive and negative parts. ‘rw_sep’ - separate
random walk normalisation of positive and negative parts.

Returns Output assignment to clusters.
Return type array of int, or list of array of int
Other Parameters
* eigens (int) — The number of eigenvectors to take. Defaults to k.

¢ mi (inf) — The maximum number of iterations for which to run eigenvlue solvers. Defaults
to number of nodes.

waggle (k, labs, matrix=None, rounds=>50, mini=False)
Postprocessing based on iteratively merging and cutting clusters of the provided solution.

Pairs of clusters are merged randomly. Merged clusters are then partitioned in two by spectral clustering
on input matrix.

Parameters
* k (int)— The number of clusters to identify.
e labs (array of int)- Initial assignment to clusters.

* matrix (csc matrix) — Matrix to use for partitioning. Defaults to un-normalised
adjacency matrix.

Returns Output assignment to clusters.
Return type array of int
Other Parameters
* rounds (int) — Number of iterations to perform.

e mini (boolean) — Whether to minimise (rather than maximise) the input matrix objective
when partitioning.

4.2 The block_models module

This module contains a series of function that can generate random graphs with a signed community structure.

block_models.SBAM (n,k, p, eta)
A signed Barabdsi—Albert model graph generator.

Parameters
¢ n — (int) Number of nodes.
¢ k — (int) Number of communities.
* p — (float) Sparsity value.
¢ eta — (float) Noise value.

Returns (a,b),c where a is a sparse n by n matrix of positive edges, b is a sparse n by n matrix of
negative edges c is an array of cluster membership.

14 Chapter 4. Modules (API reference)

sighet Documentation, Release 0.0.1

block_models.SRBM (n,k, p, eta)
A signed regular graph model generator.

Parameters
¢ n — (int) Number of nodes.
¢ k — (int) Number of communities.
* p — (float) Sparsity value.
* eta — (float) Noise value.

Returns (a,b),c where a is a sparse n by n matrix of positive edges, b is a sparse n by n matrix of
negative edges c is an array of cluster membership.

block_models.SSBM (n, k, pin, etain, pout=None, etaout=None, values="ones’, sizes="uniform’)
A signed stochastic block model graph generator.

Parameters
* n — (int) Number of nodes.
e k — (int) Number of communities.
* pin — (float) Sparsity value within communities.
¢ etain - (float) Noise value within communities.
* pout — (float) Sparsity value between communities.
* etaout — (float) Noise value between communities.

* values — (string) Edge weight distribution (within community and without sign flip; oth-
erwise weight is negated): ‘ones’: Weights are 1. ‘gaussian’: Weights are Gaussian, with
variance 1 and expectation of 1.# ‘exp’: Weights are exponentially distributed, with param-
eter 1. ‘uniform: Weights are uniformly distributed between 0 and 1.

* sizes — (string) How to generate community sizes: ‘uniform’: All communities are the
same size (up to rounding). ‘random’: Nodes are assigned to communities at random. “un-
even’: Communities are given affinities uniformly at random, and nodes are randomly as-
signed to communities weighted by their affinity.

Returns (a,b),c where a is a sparse n by n matrix of positive edges, b is a sparse n by n matrix of
negative edges c is an array of cluster membership.

4.3 The utils module

The utils module mainly contains functions that are used elsewhere in the package. It also contains the function
objscore calculating the value of an arbitrary objective function on a given graph partition.

utils.cut (elemlist, matrix, numbers, dc, mini)
Cuts clusters by separately normalised PCA.

Parameters

* elemlist (1ist of lists of int)— Specifies the members of each cluster in the
current clustering

* matrix (csc matrix)— Matrix objective with which to cut.
* numbers (1ist of int)- Marks previous clustering to use as starting vector.

* dc (boolean)— Whether to skip cutting last cluster

4.3. The utils module 15

signet Documentation, Release 0.0.1

* mini (boolean)— Whether to minimise (instead of maximise) matrix objective.
Returns new cluster constituents
Return type list of lists of int

utils.invdiag (M)
Inverts a positive diagonal matrix.

Parameters M (csc matrix)— matrix to invert

Returns scipy sparse matrix of inverted diagonal

utils.merge (elemlist)
Merges pairs of clusters randomly.

Parameters elemlist (1ist of lists of int)- Specifies the members of each cluster in
the current clustering

Returns New cluster constituents boolean: Whether last cluster was unable to merge list of int: List
of markers for current clustering, to use as starting vectors.

Return type list of lists of int

utils.objscore (labels, k, matl, mat2=None)
Scores a clustering using the objective matrix given

Parameters

* labels (1ist of int)- Clustering assignment.

* k (int)— Number of clusters.

* matl (csc matrix)— Numerator matrix of objective score.

* mat2 (csc matrix)—Denominator matrix of objective score. Default is no denominator.
Returns Score.
Return type float

utils.sqrtinvdiag (M)
Inverts and square-roots a positive diagonal matrix.

Parameters M (csc matrix)— matrix to invert

Returns scipy sparse matrix of inverted square-root of diagonal

16 Chapter 4. Modules (API reference)

CHAPTER B

Indices and tables

* genindex
* modindex

e search

17

signet Documentation, Release 0.0.1

18 Chapter 5. Indices and tables

Python Module Index

b

block_models, 14

C

cluster, 9

u
utils, 15

19

signet Documentation, Release 0.0.1

20 Python Module Index

Index

A

A (cluster.Cluster attribute), 9

B

block_models (module), 14

C

Cluster (class in cluster), 9
cluster (module), 9
cut () (in module utils), 15

D

D_n (cluster.Cluster attribute), 9
D_p (cluster.Cluster attribute), 9
Dbar (cluster.Cluster attribute), 10

F

find_eigenvalues () (cluster.Cluster method), 11

G

geproblem_adjacency () (cluster.Cluster method),
11

geproblem_laplacian () (cluster.Cluster method),
12

invdiag () (in module utils), 16

M

merge () (in module utils), 16

N

n (cluster.Cluster attribute), 9
normA (cluster.Cluster attribute), 10

O

objscore () (in module utils), 16

P

p (cluster.Cluster attribute), 9

S

SBAM () (in module block_models), 14
SDP_cluster () (cluster.Cluster method), 10
size (cluster.Cluster attribute), 10

spectral_cluster_adjacency () (clus-
ter.Cluster method), 12
spectral_cluster_adjacency_reg() (clus-
ter.Cluster method), 12
spectral_cluster_bethe_hessian () (clus-
ter.Cluster method), 13
spectral_cluster_bnc () (cluster.Cluster
method), 13
spectral_cluster_laplacian() (clus-

ter.Cluster method), 13
SPONGE () (cluster.Cluster method), 10
SPONGE_sym () (cluster.Cluster method), 10
sgrtinvdiag () (in module utils), 16
SRBM () (in module block_models), 14
SSBM () (in module block_models), 15

U

utils (module), 15

W

waggle () (cluster.Cluster method), 14

21

	Installation
	Installing the requirements
	Installing the package

	Implemented Algorithms
	Spectral clustering
	Semidefinite clustering
	Generalised eigenproblem clustering

	Typical usage of the package
	Modules (API reference)
	The cluster module
	The block_models module
	The utils module

	Indices and tables
	Python Module Index
	Index

